Generating Job Schedules for Vessel Operations in a Container Terminal

Thin-Yin Leong, Hoong Chuin Lau
Singapore Management University, 80 Stamford Road Singapore (178902), {tyleong, hclau}@smu.edu.sg

Vessel discharge and load jobs in a container terminal can be divided into sequences, one for each assigned quay crane (QC). A QC sequence lists containers in their desired handling order. The common practice for operators is to make do with just this sequence, without generating a job schedule (i.e. desired start-times of handling each container). Operators who need job schedules generate crude ones by using an average gross crane rate (GCR) gleaned from past experience. For realism, the job schedules should recognize the limit the maximum number of prime-movers and yard cranes that it can deploy. In this paper, we study how job schedules can be efficiently generated that maximizes the GCR (or equivalently minimizes the QC total make-span). With an effective algorithm, resources available to a QC can be adjusted, sharing with other QCs, to ensure that its job sequence can be completed by the target end-time. This would lead to more efficient use of terminal resources and good control on the overall vessel completion time.

Keywords: Container terminal, transport scheduling, flowshop, heuristics, quay crane.

1. Introduction

Top ten ports of the world (such as Singapore) have multiple container terminals that are being operated today by competitive corporations, rather than run as a department of their local government. As such, they are increasingly more concerned about competitiveness, cost and service performance than ever before. They now serve concurrently many vessels alongside and their operation hours are being extended to be non-stop round-the-clock. Together with their growth in size to keep up with global demand, they have become more complex to operate.

To better understand the complexity of operations in the terminals, we will describe a typical vessel operation in its fine detail: A vessel discharge job takes 1.5 mins quay crane (QC) cycle to fetch a container from the vessel. A prime-mover (PM) marries up with the QC and the container is loaded onto the PM's trailer. The PM travels for 8 mins transporting the container from the QC to a yard crane (YC). The YC takes the container off the trailer releasing the PM for its next job, and the YC completes its 3.0 mins cycle time to place the container in a yard location. It then moves to a point ready to serve another PM. A vessel load job would be similarly constructed with the PM arriving at a YC first and then transporting the container to a QC.

The container discharge and load jobs can be divided into QC sequences, one for each QC assigned to it. A QC sequence lists containers by the container IDs in their desired handling order. Associated with each QC sequence should be a start-time and a target gross crane rate (GCR), i.e. the average number of containers moved in an hour. From these, the target end-time can be deduced.

In this paper, we investigate a real-world problem faced by a container terminal of how job schedules (i.e. desired start-times of handling each container) can be efficiently generated from these sequences. The objective in generating the job schedules is to maximize the GCR or equivalently minimize the QC operation’s total make-span. The typical approach currently practised, without generating a schedule, is to make do with just the QC sequence, because generating a feasible schedule proved to be extremely challenging. Another approach is to generate schedules by using an average GCR gleaned from past experience, without considerations of PM and YC equipment constraints. For realism, the job schedules should recognize the limit the maximum number of PMs and YCs that it
can deploy. With an effective algorithm, resources available to a QC can be adjusted, sharing with other QCs, to ensure that its job sequence can be completed by the target end-time. This would thus lead to more efficient use of terminal resources and good control on the overall vessel completion time.

Our problem is very much related to the classical flow-shop scheduling problem. It is in effect a bi-directional flow shop where a job is defined as moving a container from the vessel to a pre-designated yard, or vice versa. Each job comprises 3 tasks – the processing on a QC, the movement by a PM, and the processing by a YC. We are interested in a special constraint that a string of jobs which must be either started or completed in a strict handling sequence for one type of machines (i.e. the QCs). This constraint is imposed by the need to discharge or load containers in a certain order from the vessel.

2. Literature

Murty et al (2004 and 2005) and Steenken et al (2004) provide excellent descriptions of container terminal operations. Earlier, operations research studies on container terminal operations have focused on high level strategic design and tactical planning problems: demand forecasting, terminal and berth capacity planning, berth planning, vessel stowage planning and yard planning. There have not been as many studies on operational scheduling and control concerns as these problems tend to be complex, and unless properly handled is best left to practitioners to work out in real-time operational execution. Otherwise, constraint programming and artificial intelligence methods are used. Artificial Intelligence (AI) methods are extremely difficult to implement in real-life and are often avoided by practitioners. So very few are actually implemented into real systems, especially those commercially available.

To support potential automation of the terminals with automated guided vehicles (AGVs) and automatic stacking cranes (ASCs), these complex problems and solution approaches can no longer be avoided. Liu et al (2002) and Bish et al (2001 and 2005) consider the scheduling and dispatching of PMs to support QC operations, addressing specific problems like vehicle routing, job dispatching etc. which container terminal operators cannot force compliance on the PM drivers, and may be they can do a better job finding the best route. Steenken et al 2000 considers the need to coordinate transport and stowage in shipping planning.

Recently, there is a surge of studies (e.g. Zhu and Lim 2004, Ng and Mak 2006, Jung and Kim 2006) on discovering the optimal “crane split” of vessel discharge and load jobs among the QCs for a single vessel. This problem is similar to the production line balancing problem. The output of this would be a sequence for each QC, but these studies largely assume infinite terminal resources to support the QCs. Such problems for the whole container terminal (Moccia et al 2005) are complex and large mixed integer programs, requiring branch-and-cut, agent-based AI and heuristics approaches.

3. Problem Formulation

We now state the notations (refer to Figure 1) for describing the mathematical formulation of our problem. Consider a QC sequence. For the i^{th} container in this sequence, $i = 1, ..., n$, let T_j be the job type, S_j be the job start-time and E_j be the job end-time on equipment j, $j \in \{u, x, y\}$ where u denotes QC, x denotes PM and y denotes YC. $T_i \in \{Disc, Load\}$, where Disc denotes discharge and Load denotes load jobs. C_{ui} and C_{yi} respectively are the QC and YC cycle times (which can be simply C_u and C_y if independent of i) and C_{si} is the PM travel time, computed by dividing the approximate distance between the container’s current location to its destination with the average PM speed. There is also an interface time C_{fi}, specified as the minimum time required between a PM arrival to a crane and its departure from that crane, during which a container is placed or removed.
from its trailer. In general, all time durations $C_\ldots \geq 0$. By definition, the relationships between the variables are as follows:

$$E_{ji} = S_{ji} + C_{ji}, \quad i = 1, \ldots, n, \quad j \in \{u, y\}$$ \hspace{1cm} (1)

$$S_{xi} \equiv \begin{cases} E_{ui} - C_{f}, & \text{if } T_j = \text{Disc} \\ E_{yi} - C_{f}, & \text{if } T_j = \text{Load} \end{cases}, \quad i = 1, \ldots, n$$ \hspace{1cm} (2)

$$E_{ai} \equiv \begin{cases} S_{yi} + C_{f}, & \text{if } T_i = \text{Disc} \\ S_{ui} + C_{f}, & \text{if } T_i = \text{Load} \end{cases}, \quad i = 1, \ldots, n$$ \hspace{1cm} (3)

Vessel Discharge

Vessel Load

The problem is to determine S_{ui} and S_{yi} for $i = 1, \ldots, n$, which in turn defines S_{xi} and all the job end-times since the cranes and PMs must work hand-in-hand transferring the containers between them.

The **Job Schedule Generation** Problem is formulated formally as follows:

\[\text{(GenSch}_{XY}): \]

Minimize $Z = E_{un}$ [or Maximize $GCR = n/(E_{un} - S_{u1})$] \hspace{1cm} (4)

subject to

$$S_{ui} \geq E_{ui-1}, \quad i = 2, \ldots, n$$ \hspace{1cm} (5)

$$n(D_{u}) \leq X \quad \text{where} \quad D_{u} = \{k : S_{ui} \leq S_{uk} < E_{ui}, \quad k = 1, \ldots, n\}, \quad i = 1, \ldots, n$$ \hspace{1cm} (6)

$$n(D_{yi}) \leq Y \quad \text{where} \quad D_{yi} = \{k : S_{yi} \leq S_{yk} \leq E_{yi} < E_{yk}, \quad k = 1, \ldots, n\}, \quad i = 1, \ldots, n$$ \hspace{1cm} (7)

$$S_{yi} - E_{ui} \geq C_{yj}, \quad \text{if } T_j = \text{Disc}$$ \hspace{1cm} (8)

$$S_{ui} - E_{yi} \geq C_{xi}, \quad \text{if } T_i = \text{Load}$$ \hspace{1cm} (9)

$$S_{ui} \geq 0 \text{ and } S_{yi} \geq 0 \text{ for } i = 1, \ldots, n.$$
Objective function (4) minimizes the make-span, i.e. the completion time of the QC sequence. S_{ul} is the start-time of the first QC job and also the sequence start-time. Without loss of generality, we let $S_{ul} = 0$. Constraint (5) specifies that the QC handling order and its capacity are not violated. Constraints (6) and (7) ensure respectively that the number of PMs and YCs deployed at the start-time of any job i do not exceed the available X prime movers and Y yard cranes. Since increase in equipment deployed happens only at the start-times of PM and YC jobs, constraints (6) and (7) will ensure that limits X and Y are not exceeded for the whole duration of working the QC sequence. Constraint (8) states that the separation time between crane handlings at both ends of a PM travel must be at least as long as the travel time so that it is physically possible to execute. Constraint (9) is the non-negativity constraint on the crane start-times. The optimal schedule of $GenSch_{XY}$ will be referred to as $SchOpt$.

One decision problem associated with $GenSch_{XY}$ is: Is there a schedule with make-span no greater than a given value Z using no more than X PMs (or no more than Y YCs, or both)? Note that if there is no restriction on the QC handling sequence, this problem is NP-complete, since the Bin-Packing problem can be trivially reduced to it by treating each PM as a bin and Z as the bin capacity. Interestingly, when the QC sequence is strictly imposed, this problem can be nicely solved by a greedy algorithm, as we will show in the next section.

4. Solution Approaches

It can be observed that good schedules for $GenSch_{XY}$ should pack the jobs tightly, with minimal time gaps between the end of one QC job and the start of the next QC job. Hence, one approach for generating a job schedule is to pack the jobs one after another, so long as they follow the QC handling sequence constraint. This algorithm (denoted as $Sch1$) would generate the highest possible GCR, but violates the PM and YC availability constraints. In the case where we do not permit the PM jobs to wait, we can simplify by replacing definitions (2) and (3) with (10) and (11) and adding constraint (12):

$$S_{xi} = \begin{cases} S_{ui} + C_{ui} - C_{f}, & \text{if } T_i = Disc \\ S_{ui} - C_{ui} - C_{f}, & \text{if } T_i = Load \end{cases}, \quad i = 1,...,n$$

$$E_{ui} = S_{ui} + C_{xi} + 2C_f, \quad i = 1,...,n$$

$$S_{yi} = \begin{cases} S_{ui} + C_{ui} + C_{ai}, & \text{if } T_i = Disc \\ S_{ui} - C_{ui} - C_{ai}, & \text{if } T_i = Load \end{cases}, \quad i = 1,...,n$$

Invoking constraints (10) and (11) together is the same as changing the inequality in (8) to equality, making the constraint binding. This resulting problem will be referred to as $GenSch_{XY}$, under which only $S_{ui}, i = 2,...,n$ is a decision variable; formerly a decision variable, $S_{yi}, i = 1,...,n$ is now a dependent variable. That is, we need only find the QC job start-times, as the rest of the start-times can be easily derived by adding or subtracting the cycle, travel and interface times.

$GenSch_{XY}$ (and hence $GenSch_{XX}$) can be solved optimally using a greedy algorithm, both for a given set of purely discharge jobs or purely load jobs. In the following, we will present our algorithm for the case of discharge jobs, followed by load jobs. It turns out that the latter algorithm is identical to the former, in reverse time sequence, as we will demonstrate.
Scheduling Discharge Jobs: We assign jobs in increasing QC handling order. For each job i, we assign its start time to be the earliest time that does not violate the PM and YC capacities. In other words, S_{ui} is the earliest time such that (1) S_{ui} is no earlier than the end time of job $i-1$; (2) S_{ui} is the time when a PM is available; and (3) S_{yi} is the time when a YC is available. Let this algorithm be denoted as Sch-$Discharge$.

Scheduling Load Jobs: Again, we assign jobs in increasing QC handling order. The trick here is to think of load jobs as discharge jobs in a reverse time sequence – so we perform scheduling in a reverse time sequence where the QC task becomes the first instead of the last task. In doing so, we shift the burden to maintain QC handling order at the end to the beginning, and hence the same algorithm in Sch-$Discharge$ may be applied. After scheduling, we simply reverse again the start and end times of each job. This trick has been shown to work for the problem discussed in Bish et al (2005). Let this algorithm be denoted as Sch-$Load$.

4.1 Analysis

Both Sch-$Discharge$ and Sch-$Load$ can be implemented to solve $GenSch_{xy}$ in worst-case time complexity of $O(n \log X)$. For each job, it suffices to determine when a PM would be available. If we maintain a heap of size X which contains the completion timings of each PM, then obtaining the earliest completion time of a PM and updating the new completion time (as a result of a job assignment) is equivalent to performing a $decreaseKey$ operation on the respective heap, which takes logarithmic time. This also means that if X is constant, then we have a linear time greedy algorithm to solve $GenSch_{xy}$. For the general case $GenSch_{2,xy}$, the situation is slightly tricky since there could be cases when a PM is available but a YC is not, and vice versa. To ensure that we find the earliest available time slot to assign a job, we need to scan from the earliest available time of a PM forward until the time when a YC is available. Typically, since the YC cycle is short, this scan is negligible.

In the following, we will prove that both Sch-$Discharge$ and Sch-$Load$ are optimal for restricted cases.

Proposition 1: Sch-$Discharge$ is optimal to $GenSch_{xy}$ if all jobs are discharge jobs.

Proof: This can be shown by an exchange argument as follows. Denote the schedule obtained by Sch-$Discharge$ as Sch. Suppose that there exists an optimal schedule $SchOpt$ that is not the same as Sch. Consider each job assignment in $SchOpt$ from 1 to n in that order. Let job i be the first job whose start time is different from Sch. Let the start times of this job be denoted S_{ui} and S_{ui}^{OPT} respectively. Since the start-time for job i in Sch is the earliest possible, we have $S_{ui} < S_{ui}^{OPT}$. Now shift the start-time of job i in $SchOpt$ backward from S_{ui}^{OPT} to S_{ui}. Note that this will not introduce infeasibility with the jobs before i, since Sch is a feasible schedule. Clearly, shifting backwards will also not affect the feasibility of the jobs after i. Furthermore, the resulting make-span will either remain or improve. Following this argument inductively, we can convert $SchOpt$ to Sch without affecting the make-span. Hence, Sch is also an optimal schedule. □

Corollary: Sch-$Load$ is optimal to $GenSch_{2,xy}$ if all jobs are load jobs.

Proof: Again, a simple argument as above can show this.

Unfortunately, the above algorithm is not optimal for $GenSch_{2,xy}$ in general. Consider the following counter example comprising a sequence of 6 pure discharge jobs where the QC and YC cycle times are 1 and 2 respectively, PM travel times are 10, 9, 10, 7, 6, 20 respectively, and capacities $X=6$ and $Y=2$. In this case, Sch-$Discharge$ produces a make-span of 32 while the optimal make-span is 30.
Thus far, we have considered algorithms for purely discharge or purely load jobs. If we are given a mixed sequence of discharge followed by load jobs, then it is technically cumbersome to switch between Sch-Discharge and Sch-Load. Furthermore, this presents the additional challenge to splice the solutions together in a manner that can exploit savings at the cross-over time region between discharge and load jobs. For instance, some discharge jobs might be deferred to allow some load jobs to start earlier, so that the QC will not need to wait for the load jobs to arrive upon completion of all discharge jobs.

In the following we will consider a new single-pass forward algorithm to handle mixed job sequences. This algorithm is simple, efficient and effective (see Experiments section). Unfortunately, it does not preserve the optimality property presented in Propositions 1 and 2. It will however do so if we consider a restricted version of the GenSch2XY problem. We define function MAX_m to return the m^{th} largest value, and replace constraints (6) and (7) by (13) and (14):

\[
S_{xy} \geq MAX_x \{E_{yk} : k = 1,...,i-1\} \quad i = 2,...,n \tag{13}
\]

\[
S_{yi} \geq MAX_y \{E_{yx} : k = 1,...,i-1\} \quad i = 2,...,n \tag{14}
\]

$GenSch2_{XY}$ modified as above will be referred to as $GenSch3_{XY}$. It is clear that (13) \Rightarrow (6) and (14) \Rightarrow (7). Hence, feasible solutions to $GenSch3_{XY}$ provide feasible and upper bound solutions to $GenSch_{XY}$.

The following greedy algorithm $Sch3_{XY}$ is proposed: Start sequentially from job $i = 2$ to find S_{ai} and then compute the rest using (1), (10), (11) and (12). Using the property of constraints (13) and (14), the feasible solution for each job i can be found by shifting only job i forward so that its PM job start-time is not earlier than the X^{th} largest end-time from among all the PM jobs preceding it and its YC job’s start-time is not earlier than the Y^{th} largest end-time from among all the YC jobs preceding it. Again, we seek to restore feasibility with least delay to job i. Both algorithms generate the job start-times for QC, PM and YC jobs in a single pass, without violating the handling order of QC jobs or exceeding the PM and YC availability limits. It can be shown that $Sch3_{XY}$ is optimal for $GenSch3_{XY}$.

5. Experiments and Discussions

In this section, we report computational experiments to test the efficiency of the algorithms and quality of results measured in real-world terms. Extensive experimental results that compare our heuristics with other heuristics and exact MIP models have been reported in a separate paper (see Zhao et al 2007).

A total of 432 realistic test cases were generated for the following data values (all times in minutes): $C_f = 0.25$, $C_a \in [1.0, 1.5, 2.0]$, $C_y \in [2.3, 3.0, 3.5]$, $C_{ai} \in [8 \pm 4, 10 \pm 5, 12 \pm 6]$ (uniformly-distributed), $X \in \{4, 5, 6, 7\}$ and $Y \in \{2, 3, 4, 5\}$. For each test case, a QC job sequence of 100 jobs is randomly generated, with 50 discharge jobs followed immediately by 50 load jobs. We compute the following results: average (approx.) and maximum PMs and YCs used under $Sch3_{XY}$, maximum number YC used and number of times more than Y YCs are used under $Sch3_{Xa}$, and GCR under $SchOpt$, $Sch3_{XY}$ and $Sch3_{Xe}$.

Results of the computational experiments are as follows:

6
(1) Sch3_{XY} is near-optimal with \((GCR^{Sch3_{XY}} - GCR^{SchOpt}) / GCR^{SchOpt} = -0.3\%\) average and -3.6\% maximum. SchOpt takes 5sec to 43sec to compute, averaging at 22sec. With \(GCR^{Sch3_{XY}} \approx GCR^{SchOPT}\) and Sch3_{XY} running in sub-second time, we conclude that in real life, constraints (10) to (12) are generally reasonable assumptions to make and Sch3_{XY} offers a very practical near-optimal approach.

(2) Sch3_{XY} was found to be better than optimal: \((GCR^{Sch3_{XY}} - GCR^{SchOpt}) / GCR^{SchOpt} = 4.4\%\) average and 33.5\% maximum. It is of course infeasible relative to the constraint on \(Y\) YCs. However, the number of times \(Y\) was violated was found to be moderate: 11 jobs on average and 55 jobs maximum out of 100.

Using our proposed scheme for generating job schedules Sch3_{XY}, we are able to examine the relationship between GCR and various PM/QC and YC/QC available ratios, which is shown in Figure 2. The GCR increases with PM/QC rising linearly and then saturates at different levels that increases with YC/QC. This is consistently with what is observed in actual terminal operations, though they usually track the relationship to the deployed ratios rather than the availability limits.

![Gross Crane Rate](image)

Figure 2: Gross Crane Rate vs PM and YC equipment available

6. Concluding Remarks

The most critical resource in the container terminals is usually not the YC: YC holding is typically almost four times that of QC. The liberal relative quantities of YC is mostly to cater for the fact that YCs are physically distributed over a very large area and they are not mobile enough to be quickly moved from one location to another location. Hence, the key issue is not YC availability but activating the right sub-set of YCs. The terminals can usually do with more PMs since QC is the most expensive resource of the three, and thus should not be slowed down unnecessarily by the lack of YCs or PMs. But having too many PMs without highly sophisticated coordination means would only lead to queues in the wrong places and massive traffic congestion. Hence the controlling variable in container terminal productivity is usually PM availability. For this reason, we can safely focus on GenSch_{XY} rather than GenSch_{oY}.

We observe that the number of YC deployed does not go frequently above reasonable \(Y\) limits when the schedule is generated using Sch3_{XY}. In fact, the number YCs used are often below \(Y\), i.e.
constraint (7) is usually non-binding. This suggests that we may not need to constraint YCs and let it be an outcome of the PM/QC availability instead. Additional YCs required, beyond base availability given, may be marshaled for blocks of time from other QCs. Conversely, this QC can share its YCs with other QCs when they need them for short periods of time. Therefore, the result exploited in a multiple QCs situation would result in higher GCRs for all QCs, with no additional investment in YCs by the container terminal.

Without loss of generality, we have made simplifying assumptions in our study, e.g. each PM carries only one container and only one yard location is visited per PM trip. Further operational refinements are needed for deploying the proposed algorithm in container terminal operations, which include these and many other practical details. These additions however would not compromise or alter the nature of results reported here. As an example, we may replace PMs in our model with straddle carriers (SCs), the alternative mover-stacker used in terminal operations. SC terminal operations has the advantages that no YCs are needed since SCs can stack containers in the yard, and QCs and SCs do not have to wait for each other as they can put and pickup containers from the wharf side, i.e. their operations are de-synchronized within reasonable limits. Our results will still apply.

In this paper, we considered job scheduling for a single QC. In a continuing work, we study a decentralized multi-QC coordination problem where resources (PM, YCs) are shared. There, we employ a combinatorial auction mechanism to broker the utilization of shared resources to conflicting demands arising from multiple QCs. The algorithm proposed in this paper provides the base algorithm for individual QCs (bidders) to generate their optimal resource bundle bids to be submitted to the auctioneer.

References